

Metal Grids for OLED Transparent Conductors

DOE SSL Workshop, January 29, 2014

Mike Carmody Chief Scientist Intrinsiq Materials

Why Grids? Performance Drivers

- The best transparent conductors really aren't conductive enough (sheet resistance > $5 \Omega/sq$)
- There are voltage and luminance drops as the current flows laterally
- Heat can build up locally

 As dimensions of the panels increase in size to greater than a few centimeters grids are thought to become necessary

Grids bring their own set of problems

- T = 1-w/h Increased Grid Width= Decreased Transparency
- We can increase the height of the metal, but that affects the next coated layer
- What metal should be used?
- What should the grid pattern be?

Printing Conductive Grids

- Expected to be significantly less expensive than sputtering and photolithography*
- Allows rapid change of pattern design (this might be especially useful for prototyping)
- Can printed grids meet the performance requirements
 - Low Sheet resistance < 1 Ω /sq -- Thicknesses < 1 μ m
 - Optical T > 90%
 --Line width < 150 μm

Printing Considerations

- Nano Ag has been the metal of choice for printing inks
- Resistivity is still not good enough (5-10X bulk Ag)
- Does it have to be Ag? Au is expensive and there are worries about Cu and Al oxidation
- Inkjet printing may not be able to provide fine enough lines to meet fill factor requirements
- Experimentalists have used laser sintering or other deposition techniques to provide lines </= 10 μm

Touch Screen Printing Market Opportunity intrinsique Bridge/Jumper Circuit

Ag Lines by Selective Laser Sintering¹

- -PEN substrate
- -10 μm lines
- -~150 nm thick
- -4.3 X bulk copper
- -9 to 22 Ω/sq
- -80-92 % T

Laser Sintering of Cu Nanoparticles²

- -Ambient conditions, no oxidation
- -Spin coated on Glass
- -Pattern height is 450 nm
- \sim 4.5 μ m wide lines
- $-\rho = ^2 3X$ bulk Cu

Can Printed Cu Withstand Oxidation?

 Spin coated and laser sintered three different Cu inks

- Compared to a similar Cu trace prepared by printing a seed layer and electroless plating Cu on top of it
- Kept in a chamber at 85°C and 85% RH
- Measured changes in resistivity over time

Cu Can Withstand Oxidation!

Conclusions

- Printed metal grids offer the possibility of improved cost and improved performance
- Lines of widths necessary for high transmittance have been produced by a variety of techniques
- These lines need to be combined with OLED panels to determine interactions
- michaelcarmody@intrinsiqmaterials.com